Ca2+ feedback on "quantal" Ca2+ release involving ryanodine receptors.

نویسندگان

  • C Dettbarn
  • P Palade
چکیده

The influence of luminal and cytoplasmic Ca2+ on the ability of ryanodine-sensitive stores to undergo multiple partial ("quantal") releases has been assessed. Increased luminal Ca2+ levels do indeed modulate sarcoplasmic reticulum Ca2+ release by lowering the threshold agonist concentration required to elicit release, but the decrease in luminal Ca2+ that accompanies a partial release is not sufficient by itself to terminate release. Similarly, an increase in cytoplasmic Ca2+ lowers the threshold agonist concentration required to elicit release; thus, the bulk cytoplasmic Ca2+ levels attained during a release would only stimulate further release, not terminate it before it reached completion. Very high cytoplasmic Ca2+ levels (1-3 mM) also triggered release but were unable to terminate release before reaching completion. Thus, even the high local cytoplasmic Ca2+ concentration that might accompany release would also not terminate release. It is concluded that Ca2+ feedback can modulate release through ryanodine receptors but that it does not account for the properties of quantal release. The low affinity inhibitor tetracaine induces a decrease in the extent of release that cannot be explained solely by heterogeneous caffeine sensitivity of the stores. The results are interpreted in terms of a scheme that includes (i) heterogeneous sensitivity of stores, conferred in part by differences in luminal Ca2+ content and (ii) adaptive behavior on the part of individual ryanodine receptors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ca2+-induced Ca2+ Release in Chromaffin Cells Seen from inside the ER with Targeted Aequorin

The presence and physiological role of Ca2+-induced Ca2+ release (CICR) in nonmuscle excitable cells has been investigated only indirectly through measurements of cytosolic [Ca2+] ([Ca2+]c). Using targeted aequorin, we have directly monitored [Ca2+] changes inside the ER ([Ca2+]ER) in bovine adrenal chromaffin cells. Ca2+ entry induced by cell depolarization triggered a transient Ca2+ release f...

متن کامل

Dihydropyridine receptors and type 1 ryanodine receptors constitute the molecular machinery for voltage-induced Ca2+ release in nerve terminals.

Ca2+ stores were studied in a preparation of freshly dissociated terminals from hypothalamic magnocellular neurons. Depolarization from a holding level of -80 mV in the absence of extracellular Ca2+ elicited Ca2+ release from intraterminal stores, a ryanodine-sensitive process designated as voltage-induced Ca2+ release (VICaR). The release took one of two forms: an increase in the frequency but...

متن کامل

Presynaptic ryanodine receptors are required for normal quantal size at the Caenorhabditis elegans neuromuscular junction.

Analyses of the effect of ryanodine in vertebrate brain slices have led to the conclusion that presynaptic ryanodine receptors (RYRs) may have several functions in synaptic release, including causing large-amplitude miniature postsynaptic currents (mPSCs) by promoting concerted multivesicular release. However, the role of RYRs in synaptic release is controversial. To better understand the role ...

متن کامل

Ca2+-Induced Ca2+ Release Supports the Relay Mode of Activity in Thalamocortical Cells

Ca2+ ions play an important role during rhythmic bursting of thalamocortical neurons within sleep. The function of Ca2+ during the tonic relay mode of these neurons during wakefulness is less clear. Here, we report that tonic activity in thalamocortical cells results in an increase in the intracellular Ca2+ concentration and subsequent release of Ca2+ from intracellular stores mediated via ryan...

متن کامل

Functional coupling of Ca2+ channels and ryanodine receptors in cardiac myocytes.

In skeletal muscle, dihydropyridine receptors are functionally coupled to ryanodine receptors of the sarcoplasmic reticulum in triadic or diadic junctional complexes. In cardiac muscle direct physical or functional couplings have not been demonstrated. We have tested the hypothesis of functional coupling of L-type Ca2+ channels and ryanodine receptors in rat cardiac myocytes by comparing the ef...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular pharmacology

دوره 52 6  شماره 

صفحات  -

تاریخ انتشار 1997